Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ai-Hua Yuan* and Hu Zhou

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China

Correspondence e-mail: aihuayuan@163.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.103$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$\operatorname{Bis}\left(1 H\right.$-benzotriazole- κN^{3})bis(isothiocyanato- κN)zinc(II) $\mathbf{1 H}$-benzotriazole hemisolvate

In the asymmetric unit of the title complex, $\left[\mathrm{Zn}(\mathrm{NCS})_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}$, there are two independent $\mathrm{Zn}^{\text {II }}$ atoms, which are four-coordinated in a distorted tetrahedral coordination environment defined by four N atoms from two monodentate $1 H$-benzotriazole ligands and two terminal isothiocyanate ligands.

Comment

The coordination chemistry of benzotriazoles (Hbta) has been explored in recent years (Himes et al., 1981; Handley et al., 1993; Hursthouse et al., 1986). One reason for this is the anticorrosion action of benzotriazoles towards certain metals, particularly copper, zinc and their alloys (Sockalingum et al., 1991). To understand the complex surface chemistry that leads to corrosion inhibition and to create new inhibitors more efficient than Hbta, chemical, physical and structural studies on realistic model complexes are required. Despite the extensive use of Hbta and its derivatives as corrosion inhibitors for zinc and its alloys, only a few zinc compounds have been structurally characterized by X-ray diffraction (Inger \& Kurt, 1981; Li et al., 2002). We report here the preparation and crystal structure of a new $\mathrm{Zn}^{\mathrm{II}}$ complex incorporating the Hbta ligand, viz. $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(\mathrm{Hbta})_{2}\right] \cdot 0.5 \mathrm{Hbta},(\mathrm{I})$.

As shown in Fig. 1, the asymmetric unit of compound (I) contains two independent coordinated $\mathrm{Zn}^{\mathrm{II}}$ atoms and one Hbta solvent molecule. Atoms Zn 1 and Zn 2 are similarly fourcoordinated by two N atoms from two Hbta ligands and by two N atoms from two terminal isothiocyanate ions, giving distorted tetrahedral geometries. This coordination environment is similar to that found in $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(4 \text {-dmap })_{2}\right][4$-dmap $=4-(N, N$-dimethylamino $)$ pyridine; Secondo et al., 2000] and $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(\mathrm{PPz})_{2}\right]_{n}(\mathrm{PPz}=$ piperazine; Suen et al., 2002). The Hbta ligand coordinates one $\mathrm{Zn}^{\mathrm{II}}$ atom in a monodentate mode, similar to that in compounds $\left[\mathrm{ZnCl}_{2}(\mathrm{Hbta})_{2}\right]$ (Inger \& Kurt, 1981) and $\left[\mathrm{Zn}(\mathrm{Hbta})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Li et al., 2002). The $\mathrm{Zn}-\mathrm{N}(\mathrm{Hbta})$ bond lengths are 2.016 (2) and 2.018 (2) \AA

Received 13 September 2004 Accepted 21 September 2004 Online 9 October 2004

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
for Zn 1 , and 2.000 (2) and 2.017 (2) \AA for Zn 2 , close to the corresponding value of 2.024 (10) \AA (mean) in the distorted tetrahedral compound $\left[\mathrm{ZnCl}_{2}(\mathrm{Hbta})_{2}\right]$ (Inger \& Kurt, 1981) and shorter than the corresponding value of 2.171 (3) \AA (mean) in the distorted octahedral compound $\left[\mathrm{Zn}(\mathrm{Hbta})_{4^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Li et al., 2002). The $\mathrm{Zn}-\mathrm{N}(\mathrm{NCS})$ bond lengths (Table 1) can be compared with the values found in $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(4 \text {-dmap })_{2}\right][1.936$ (6) and 1.941 (5) Å; Secondo et al., 2000] and $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(\mathrm{PPz})_{2}\right]_{n}[1.940$ (3) and 1.953 (3) \AA; Suen et al., 2002]. The $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ bond angles of the distorted tetrahedral Zn 1 atom are in the range 104.43 (11)$112.40(11)^{\circ}$, close to the corresponding values of the Zn 2 atom, which are in the range $105.21(10)-112.91(12)^{\circ}$. The isothiocyanate anions are almost linear (Table 1), in good agreement with the results usually obtained for terminal N bonded isothiocyanate anions. The bond angles involving isothiocyanate for $\mathrm{Zn} 1(\mathrm{C} 25-\mathrm{N} 13-\mathrm{Zn} 1$ and $\mathrm{C} 26-\mathrm{N} 14-$ Zn 1) are 156.7 (2) and 165.4 (2) ${ }^{\circ}$, respectively, slightly smaller than the corresponding values for $\mathrm{Zn} 2[\mathrm{C} 27-\mathrm{N} 15-\mathrm{Zn} 2=$ $166.5(2)^{\circ}$ and $\left.\mathrm{C} 28-\mathrm{N} 16-\mathrm{Zn} 2=174.9(3)^{\circ}\right]$, and similar to the values observed in $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(4 \text {-dmap })_{2}\right][164.2((5)$ and $166.1(5)^{\circ}$; Secondo et al., 2000] and $\left[\mathrm{Zn}(\mathrm{NCS})_{2}(\mathrm{PPz})_{2}\right]_{n}$ [161.4 (3) and 162.1 (3) ${ }^{\circ}$; Suen et al., 2002].

The four coordinated benzotriazole rings, viz. C1-C6/N1N3, C7-12/N4-N6, C13-C18/N7-N9 and C19-C24/N10-N12, are planar, with r.m.s. deviations of 0.009 (2), 0.006 (3), 0.009 (2) and 0.013 (3) \AA, respectively. The benzotriazole solvent molecule is also planar, with an r.m.s. deviation of 0.008 (3) \AA. There are weak $\mathrm{S} \cdots \mathrm{H}-\mathrm{N}$ and $\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$ hydrogen-bonding interactions between S atoms of coordinated isothiocyanate anions or an N atom of an Hbta molecule and H atoms from N atoms of adjacent Hbta molecules (Table 2). There are also weak $\mathrm{S} \cdots \mathrm{H}-\mathrm{C}$ interactions between S atoms of coordinated isothiocyanate anions and H atoms from benzene-ring C atoms of adjacent Hbta molecules $[\mathrm{S} 1 \cdots \mathrm{H} 11 A(2-x, 1-y,-z)=2.903 \AA, \mathrm{~S} 1 \cdots \mathrm{H} 32 A(2-x$, $2-y,-z)=2.823 \AA, \mathrm{~S} 3 \cdots \mathrm{H} 9 A(1-x, 2-y,-z)=2.949 \AA$,

Figure 2
Unit-cell packing diagram for (I). Dashed lines indicate hydrogen bonds.
$\mathrm{S} 4 \cdots \mathrm{H} 4\left(2-x, 1-y, \frac{1}{2}-z\right)=2.871 \AA, \mathrm{~S} 4 \cdots \mathrm{H} 20 A(x, y-1$, $z)=2.668 \AA$ (Fig. 2).

There are $\pi-\pi$ stacking interactions between Hbta molecules in the crystal. The dihedral angle between the C1-C6/ $\mathrm{N} 1-\mathrm{N} 3 \mathrm{Hbta}$ plane and the adjacent $\mathrm{C} 13-\mathrm{C} 18 / \mathrm{N} 7-\mathrm{N} 9(2-x$, $\left.y-\frac{1}{2},-\frac{1}{2}-z\right)$ Hbta plane is $8.2(7)^{\circ}$ and the centre-to-centre distance between the two benzene rings is 3.849 (4) \AA (the two triazole rings are offset). The C7-C12/N4-N6 Hbta molecule and the symmetry-related $\mathrm{C} 7-\mathrm{C} 12 / \mathrm{N} 4-\mathrm{N} 6(2-x, 1-y,-z)$ Hbta plane are parallel stacked (the benzene ring stacks above the triazole ring); the centre-to-centre distance between the benzene ring of one Hbta and one triazole ring of the other Hbta is 3.706 (4) \AA. The dihedral angle between the C7-C12/ N4-N6 Hbta molecular plane and the adjacent C29-C34/N17N 19 Hbta solvent molecule is $10.0(1)^{\circ}$; the centre-to-centre distance between the C7/C12/N4-N6 triazole ring and the C29-C34 benzene ring is 3.656 (6) \AA (the C7-C12 benzene ring and the C29/C34/N17-N19 triazole ring are offset). The C19-24/N10-N12 Hbta molecule and the symmetry-related $\mathrm{C} 19-\mathrm{C} 24 / \mathrm{N} 10-\mathrm{N} 12(1-x, 2-y,-z)$ Hbta molecule are parallel stacked (the two benzene rings are offset); the centre-to-centre distance between the triazole rings is 3.705 (5) A. All the above dihedral angles and distances show obvious $\pi-\pi$ stacking interactions between Hbta molecules (Tong et al., 1999; Li et al., 2001) in the crystal structure. The centre-tocentre distances between two benzene rings and triazole rings from the coordinated C13-C18/N7-N9 Hbta molecule and the neighbouring C29-C34/N17-N19 Hbta solvent molecule are 4.002 (6) and 5.007 (6) \AA, showing no $\pi-\pi$ interactions. These weak interactions sustain the stability of (I) in the solid state.

Experimental

An ethanol solution (10 ml) of benzotriazole ($0.060 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added to an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.149 \mathrm{~g}$, $0.5 \mathrm{mmol})$ and $\mathrm{KSCN}(0.107 \mathrm{~g}, 1.1 \mathrm{mmol})$ with stirring. The mixture
was stirred at room temperature for 30 min and the resultant solution was filtered. After allowing the filtrate to stand in air at room temperature for one week, well shaped colourless single crystals of (I) were obtained. Analysis found: C 42.52, H 2.54, N 27.63; calculated for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{19} \mathrm{~S}_{4} \mathrm{Zn}_{2}$: C 42.59, H 2.63, N 27.76%.

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3}$	$D_{x}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=479.35$
Monoclinic, $P 2_{1} / c$	Cell parametians from 13892
$a=14.9344(12) \AA$	reflections
$b=9.2160(6) \AA$	$\theta=3.0-27.5^{\circ}$
$c=30.256(3) \AA$	$\mu=1.42 \mathrm{~mm}^{-1}$
$\beta=97.811(2)^{\circ}$	$T=193.2 \mathrm{~K}$
$V=4125.7(6) \AA^{3}$	Block, colourless
$Z=8$	$0.32 \times 0.29 \times 0.15 \mathrm{~mm}$
Data collection	
Rigaku Mercury CCD	9425 independent reflections
\quad diffractometer	7842 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.061$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-17 \rightarrow 19$
$T_{\text {min }}=0.650, T_{\text {max }}=0.811$	$k=-11 \rightarrow 10$
43832 measured reflections	$l=-39 \rightarrow 39$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.032 P)^{2} \\
&+3.6940 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{N} 13$	$1.938(2)$	$\mathrm{Zn} 2-\mathrm{N} 16$	$1.917(3)$
$\mathrm{Zn} 1-\mathrm{N} 14$	$1.943(3)$	$\mathrm{Zn} 2-\mathrm{N} 15$	$1.963(3)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.016(2)$	$\mathrm{Zn} 2-\mathrm{N} 7$	$2.000(2)$
$\mathrm{Zn} 1-\mathrm{N} 4$	$2.018(2)$	$\mathrm{Zn} 2-\mathrm{N} 10$	$2.017(2)$
$\mathrm{N} 13-\mathrm{Zn} 1-\mathrm{N} 14$	$112.40(11)$	$\mathrm{N} 15-\mathrm{Zn} 2-\mathrm{N} 10$	$105.21(10)$
$\mathrm{N} 13-\mathrm{Zn} 1-\mathrm{N} 1$	$111.95(10)$	$\mathrm{N} 7-\mathrm{Zn} 2-\mathrm{N} 10$	$112.15(10)$
$\mathrm{N} 14-\mathrm{Zn} 1-\mathrm{N} 1$	$110.77(10)$	$\mathrm{C} 25-\mathrm{N} 13-\mathrm{Zn} 1$	$156.7(2)$
$\mathrm{N} 13-\mathrm{Zn} 1-\mathrm{N} 4$	$104.43(10)$	$\mathrm{C} 26-\mathrm{N} 14-\mathrm{Zn} 1$	$165.4(2)$
$\mathrm{N} 14-\mathrm{Zn} 1-\mathrm{N} 4$	$112.04(10)$	$\mathrm{C} 27-\mathrm{N} 15-\mathrm{Zn} 2$	$166.5(2)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 4$	$104.86(9)$	$\mathrm{C} 28-\mathrm{N} 16-\mathrm{Zn} 2$	$174.9(3)$
$\mathrm{N} 16-\mathrm{Zn} 2-\mathrm{N} 15$	$112.91(12)$	$\mathrm{N} 13-\mathrm{C} 25-\mathrm{S} 1$	$179.4(3)$
$\mathrm{N} 16-\mathrm{Zn} 2-\mathrm{N} 7$	$109.56(10)$	$\mathrm{N} 14-\mathrm{C} 26-\mathrm{S} 2$	$179.1(3)$
$\mathrm{N} 15-\mathrm{Zn} 2-\mathrm{N} 7$	$105.28(11)$	$\mathrm{N} 15-\mathrm{C} 27-\mathrm{S} 3$	$177.9(3)$
$\mathrm{N} 16-\mathrm{Zn} 2-\mathrm{N} 10$	$111.55(11)$	$\mathrm{N} 16-\mathrm{C} 28-\mathrm{S} 4$	$179.6(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{~S} 4^{\text {i }}$	0.88	2.67	3.330 (2)	132
N3-H3B \cdots S3 ${ }^{\text {ii }}$	0.88	2.82	3.482 (3)	133
N6-H6A . S $2^{\text {iii }}$	0.88	2.62	3.377 (3)	145
N9-H9B \cdots N17 ${ }^{\text {iv }}$	0.88	1.90	2.768 (4)	169
$\mathrm{N} 12-\mathrm{H} 12 A \cdots 3^{\text {v }}$	0.88	2.58	3.446 (3)	168
N19-H19A . . S2 ${ }^{\text {vi }}$	0.88	2.49	3.288 (3)	151

Symmetry codes: (i) $1+x, y, z$; (ii) $1+x, y-1, z$; (iii) $x, y-1, z$; (iv) $x, 1+y, z$; (v) $1-x, 2-y,-z$; (vi) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$.

H atoms were placed in idealized positions and refined as riding, with C-H distances of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and with $\mathrm{N}-$ H distances of $0.88 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province (No. 01 KJB150010), People's Republic of China.

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R. \& Tasker, P. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1036-1038.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Himes, V. L., Mighell, A. D. \& Siedle, A. R. (1981). J. Am. Chem. Soc. 103, 211-212.
Hursthouse, M. B., Short, R. L. \& Robinson, S. D. (1986). Polyhedron, 5, $1573-$ 1577.

Inger, S. \& Kurt, N. (1981). Acta Chem. Scand. Ser. A, 35, 739-745.
Li, B. L., Liu, H. B., Xu, Y., Chen, J. T., Wang, H. Q. \& Xu, Z. (2001). J. Mol. Struct. 587, 21-30.
Li, L. X., Wang, X. Q., Shen, G. Q., Wang, R. J. \& Shen, D. Z. (2002). Inorg. Chem. Commun. 5, 453-457.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Secondo, P. M., Land, J. M., Baughman, R. G. \& Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sockalingum, D., Fleischmann, M. \& Musiani, M. M. (1991). Spectrochim. Acta A, 47, 1475-1485.
Suen, M. C., Keng, T. C. \& Wang, J. C. (2002). Polyhedron, 21, 2705-2710.
Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. \& Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657-3659.

